
Eur. Phys. J. D 6, 319–326 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. Based on our previous work [Yiwu Duan, J.M. Yuan, C.G. Bao, Phys. Rev. A 52, 3497 (1995)],
we study deeply the periodic orbits of the hydrogen molecular ion within the Born-Oppenheimer approxi-
mation (BOA). The Thiele-Burrau’s transformation is introduced to regularize the singularities associated
with the Coulomb potential terms and to transform the problem into a direct product of a pendulum and
an anharmonic oscillator. This facilitates the analysis of the bifurcation properties of the periodic orbits.
Some more details are also given about the calculation of the semiclassical density-of-state distribution
using the Berry-Tabor formula.

PACS. 03.65.Sq Semiclassical theories and applications – 31.10.+z Theory of electronic structure, elec-
tronic transitions, and chemical binding

1 Introduction

The hydrogen molecular ion (H+
2 ) within the Born-Op-

penheimer approximation (BOA) is the simplest model for
two- or multiple-centered systems, including all molecules.
It was one of the systems that were closely examined
around 1920’s using the old and then newly developed
quantum-mechanical methods [1]. However, good agree-
ment between semiclassical and quantum treatments was
not achieved until 1979, when Strand and Reinhardt [2]
successfully applied the canonically invariant Einstein-
Brillouin-Keller quantization method [3] to the H+

2 system
with uniform semiclassical corrections. It is well known
that periodic orbits play an important role in the semiclas-
sical quantization in the chaotic regime [4], in the under-
standing of discontinuities in chaotic scattering [5], in the
theory of trapped trajectories [6] applicable to chemical re-
actions, resonances, and molecular spectroscopy [7], and in
influencing the continuous Stark spectra of atomic hydro-
gen [8]. In view of their importance we have recently car-
ried out a systematic study [9] of the periodic orbits of H+

2
within BOA as a model for general two-centered problems.
Our study of H+

2 within and beyond BOA [9,10] are stimu-
lated by the recent success of semiclassical treatments [11,
12] of doubly excited states of atomic helium, a three-body
Coulomb system. In addition to Strand-Reinhardt’s work,
these recent investigations lend support to the usefulness
of the classical treatment of electronic motion.

In our previous paper [9] we show that periodic orbits
trace out loci in the classically allowed domains in the
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constant-of-motion parameter space. This picture formed
by these curves in the constant-of-motion parameter space
can also be considered as a bifurcation diagram for the pe-
riodic orbits, that is , a diagram which shows how periodic
orbits are created or annihilated as parameters are varied.
The allowed domains in the parameter space are classified
into three regions [1,2], called P1, P2, and P3 by Strand
and Reinhardt. We were not clear about the nature of bi-
furcations of the P2 and P3 orbits. The purpose of this
paper is to show that the Thiele-Burrau regularization
transformation [13] allows us to separate the system into
two independent ones as well as regularize the dynamics.
Under this transformation, the bifurcation behavior of the
periodic orbits also becomes very clear.

The organization of the paper is as follows: We intro-
duce the Thiele-Burrau transformation to regularize the
equations of the H+

2 system in Section 2. We then discuss
the bifurcation properties of periodic orbits in Section 3. In
Section 4, we present in more detail than reference [9] the
semiclassical quantization of periodic orbits of the BOA
H+

2 system by calculating the density-of-states spectrum
using the Berry-Tabor formula [14]. Some discussions of
the dynamical behavior of H+

2 beyond BOA are given in
the last section.

2 Hamiltonian, equation of motion

The electronic part of the Hamiltonian for the planar H+
2

within the Born-Oppenheimer approximation (BOA) is
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given by

H =
p2
x + p2

y

2me
−
Ze2

ra
−
Ze2

rb
. (1)

We assume the two protons are symmetrically placed on
the x-axis with a distance R in between. This Hamiltonian
in dimensionless variables becomes [1]

H =
p2
x + p2

y

2
−

1

ra
−

1

rb
. (2)

A well-known treatment of the H+
2 system is the introduc-

tion of the confocal ellipsoidal coordinates

η = (ra − rb)/R, ξ = (ra + rb)/R . (3)

In the η-ξ coordinates the Hamiltonian is

H =
2

R2(ξ2 − η2)
(Hξ +Hη) , (4)

where

Hξ = (ξ2 − 1)p2
ξ + 2Rξ, Hη = (1− η2)p2

η . (5)

In this Hamiltonian still exist singularities at the points of
ξ = 1 and η = ±1 (corresponding to electron-proton colli-
sion). Obviously we need another method to overcome this
barrier. There are many other methods of regularization
to remove the singularities within the three-body systems.
One of the important methods is Thiele-Burrau’s transfor-
mation [13]. Since the potential of a three-body Coulomb
system is homogeneous, the dynamics is scale-invariant
with respect to the energy or (in the BOA case) to the
distance between the two protons R. For the H+

2 under the
BOA, we choose the later case, i.e., we can set the scaled
coordinate q and momentum p as: qsc = q/R, psc =

√
Rp,

and Esc = RE. Thus, we may assume the distance R = 1.
By introducing the new coordinates u and v as

ra =
1

2
[cosh(v)− cos(u)], rb =

1

2
[cosh(v) + cos(u)] ,

(6)

and a new time τ satisfying

dt

dτ
≡ G(θ) = rarb =

1

8
[cosh(2v)− cos(2u)] , (7)

the momenta pu and pv are related to px and py by

pu = −
∂F3

∂u
= −

1

2
[sin(u) cosh(v)px + cos(u) sinh(v)py ] ,

pv = −
∂F3

∂v
=

1

2
[cos(u) sinh(v)px − sin(u) cosh(v)py] ,(8)

where the generating function F3 satisfies

F3 = −[x(u, v)px + y(u, v)py] +Et . (9)

Thus the momentum

p2
x + p2

y =
1

G(θ)
(p2
u + p2

v) , (10)

and the regularized Hamiltonian becomes very simple:

K =
1

2
(p2
u + p2

v)− cosh(v)−
E

8
[cosh(2v)− cos(2u)] =

1

2
(p2
u + p2

v) + V (u, v) ≡ 0 . (11)

Clearly there is no singularity of the new Hamiltonian K
in the whole u-v space, and the transformed Hamiltonian
has an effective potential energy V (u, v). In the u-v plane
the equations of motion are

u̇ =
du

dτ
= pu ,

ṗu =
dpu
dτ

=
E

4
sin(2u) , (12)

and

v̇ =
dv

dτ
= pv ,

ṗv =
dpv
dτ

= sinh(v) +
E

4
sinh(2v) . (13)

The equation for u is just that of a pendulum and that for
v is an anharmonic oscillator which may have symmetrical
double well when E is fixed. This will provide us with a
clear physical picture to understand the dynamics of the
two-center Coulomb systems. On the other hand, it is easy
to carry out the classical calculation by using the new
Hamiltonian with no singularity.

It is well known that both the Hamilton-Jacobi equa-
tion and the Schrödinger equation are separable. Besides
the total energy, a second constant of motion exists. It is
easy to obtain this constant of motion given by

Ω = p2
u −

R2E

2
cos2 u

[
=

(
p2
η −

R2E

2

)
(1− η2)

]
. (14)

This constant of motion is related to the Runge-Lenz vec-
tor of the Kepler problem and can be given by another
form:

Ω = La · Lb +
mRZe2

2
(cos θa − cos θb) . (15)

Strand and Reinhardt [2] take the second constant of mo-
tion to be

G = −H −
2Ω

mR2
. (16)

In these equations, Li is the angular momentum vector
of the electron about the proton i and the θi is the angle
between the vector ri and the x-axis, where i denotes the
proton a or b. We denote below by γ the value of G scaled
by Ze2/R.

3 Periodic orbits and their bifurcations

It has been shown by Pauli and later Strand and Rein-
hardt [1,2] that all planar trajectories on tori can be clas-
sified into three types: P1, P2 and P3, and each type of
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Fig. 1. Poincaré Surface of Section. Left: (pu, u) and right:
(pv.v) with E = −1.

Fig. 2. Winding rate α as a function of γ with E = −1.

motion occupies a well-defined region in the parameter
γ and E space. For the type P1 trajectory, the electron
moves around the two protons between two ellipses and
cannot cross between the protons; for type P2, its motion
is inside a single ellipse and for type P3 the electron moves
in a region localized around a single proton.

Under Thiele-Burrau’s transformation, the classical dy-
namics becomes very clear. Let us start from the Poincaré
Surface of the Section (PSOS). The PSOS can be directly
obtained by rewriting the momenta pu, pv in terms of the
two constants of motion γ and E as the follows:

pu = ±

√
−

1

2
(γ +E cos2 u) ,

pv = ±

√
2 cosh(v) +

E

4
cosh(2v) +

1

4
(2γ +E) . (17)

In Figure 1 we present the PSOS with the energy fixed at
−1 in the forms of pu − u and pv − v, separately. From
Figure 1 one may obtain the periods of u and v motion as

Tu=

∮ √(
−

1

2
(γ +E cos2 u)

)−1

du ,

Tv=

∮ √(
2 cosh(v)+

E

4
cosh(2v)+

1

4
(2γ+E)

)−1

dv.(18)

Thus the winding number α of a trajectory is just the
ratio of Tu and Tv

α ≡
Tu

Tv
. (19)

In Figure 2 we give the winding rate α as a function of
the constant of motion γ with E = −1. The general orbit
is quasiperiodic. Only when the winding number is a ra-
tional fraction m/n a periodic orbit occurs. The periodic
orbits have been presented in reference [9] and we will
not discuss them in this paper. Instead, we present here
some typical high-period orbit with the self-similarity in-
side such a separable system in Figure 3. If we fix α at
a definite rational fraction, and let the parameters γ and
E vary, we then obtain a curve corresponding to a peri-
odic orbit with winding number α in the parameter space.
We present some curves of periodic orbits in the param-
eter space in Figure 4. In reference [9] we have studied
the convergent properties of the periodic orbits. Here we
would like to give a brief report of these properties.

(i) The sequences of type P1, can be represented by
α = n : m with m fixed and n going to infinity and con-
verge to the boundary separating the P2 and P1 domains.
The limiting periodic orbit, denoted by∞ : 1, corresponds
to the intercenter-line connecting the two protons (v = 0).
Actually, this orbit is the shared limiting orbit of both the
sequences of the P1 and P2 orbits. From Figure 4 we know
that the sequence of curves representing the 1 : 2n orbits
of P2 types converges onto the boundary separating the P2
and P3 types. The boundary is just the periodic perpen-
dicular to the internuclear axis, with the winding number,
1 :∞ (η = 0 or u = ±π2 ). This orbit was called [1] saddle
orbit for it goes through the saddle point of the poten-
tial. Within the P2 domain of the parameter space, the
sequences of orbits with α = m : 2n, where m is fixed
and n approaches infinity, will converge onto the bound-
ary saddle orbit as n increases. The saddle orbit is also
the limiting orbit of the sequences for the P3 periodic or-
bit with winding number α = m : n as n increases (m is
fixed).

(ii) Besides convergent properties of the periodic or-
bits, Figure 4 also tell us about the bifurcation properties
of periodic orbits, that is, it functions as a bifurcation di-
agram, in which we show how periodic orbits are born or
annihilated as we vary a control parameter, such as en-
ergy or γ. Each curve in Figure 4 represents the existence
of periodic orbit of a certain winding number at certain
values of constants of motion. More accurately, each point
on the curve corresponds to the existence of a rational
torus, thus of an infinite number of periodic orbits. Focus-
ing first on the P1 domain (0ACB) of the parameter space,
we see that all P1 orbits bifurcate from the AC curve, its
boundary with the forbidden region. This curve actually
represents the 1 : 0 orbit, an ellipse, which is stable when
the energy is greater than −2.

To get a completed picture of the bifurcation, We carry
out our analysis of stability of the mother orbit through
the calculation of the monodromy matrix. Consider a
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Fig. 3. Some examples of the self-similarity within high-period orbits. Left: the 1:16 orbit of type P2, centre: 1:8 of P3 and
right: 4:1 of type P1.

periodic orbit with period T as

x∗(T ) = x∗(0) , (20)

where x denotes both (u, v) and (pu, pv). Let a displace-
ment δx(t) occur. Thus from the equations of motion
(eqs. (12) and (13)) we obtain

δq̇i = δpi ,

δṗi = −δ(
∂V

∂qi
) = −

∂2V

∂qi∂qj
δqj = −Vijδqj . (21)

These equations can be written in the matrix form as

δẋ(t) = H ′′(t)δx(0) , (22)

where

δẋ = (δq1, δp1, δq2, δp2)T , (23)

and

H ′′ =

 0 1 0 0
−V11 0 −V12 0

0 0 0 1
−V21 0 −V22 0

 =


0 1 0 0

E

2
cos(2u) 0 0 0

0 0 0 1

0 0 cosh(v) +
E

2
cosh(2v) 0

 . (24)

From the definition of the monodromy matrix:

δx(T ) = M(T )δx(0) (25)
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Fig. 4. Curves representing existence of periodic orbits in the
γ−E parameter space. These curves are labeled by the winding
numbers of the periodic orbits. The BCED domain represents
the region for type P2, the region to its left (0ACB) corre-
sponds to type P1 and that to its right to type P3.

and equation (22) we have

δẋ(T )=Ṁ(T )δx(0)=H ′′(T )δx(T )=H ′′(T )M(T )δx(0). (26)

Thus the evaluation equation of the monodromy matrix is

Ṁ(T ) = H ′′(T )M(T ) , (27)

with M(0) = I.
The trace of the matrix for the 1 : 0 orbit is shown in

Figure 5(a). As energy varies, the trace of the monodromy
matrix of this elliptic periodic orbit changes too. When
its value goes through 2 + 2 cos(2π/α), where α = m : n
and m and n are integers, a periodic orbit of the wind-
ing number α bifurcates from it. As energy approaches to
−2, the trace of the monodromy matrix goes to 4 sharply,
and the elliptic orbit will become unstable. This bifurca-
tion route is in exact analogy with the one observed for
the system of atomic hydrogen in the presence of electric
field [8]. If we investigated the bifurcation of the periodic
orbits of types P2 and P3 in the xy-coordinates or the ηξ-
coordinates, the situation seems more complicated. In the
P2 domain, curve AC merges onto the straight line BG (at
point C), which corresponds to the borderline, α =∞ : 1,
orbit. As the periodic orbits approach this boundary with
the forbidden region from the high-energy side, these or-
bits change shape gradually and resemble more and more
closely the inter-center orbit in many aspects except that
the maximal values of their py components approach in-
finity, while that of the inter-center orbit remains zero.
Similar relation exists between the P3 periodic orbits and
the borderlines, EG and DF, which correspond also to

Fig. 5. Bifurcations of the periodic orbits of BOA H+
2 . The

curves are the traces of the monodromy matrix as a function
of E. (a) The trace of the elliptic orbit of P1 type. (b) That
of the inter-nuclear orbit of P2. (c) The trace of the borderline
orbit of EG in Figure 2 and (d) borderline DF orbit of type
P3. As energy decreases, when the trace goes through (a) 2 +
2 cos(π/α); (b) 2 + 2 cos(2π/α); (c) and (d) 2 + 2 cos(2πα),
with α is a rational number, the corresponding rational torus
and its embedded periodic orbit bifurcates out of the mother
orbits. Symbols indicate the bifurcation energies of the orbits.

the periodic orbits lying on the x-axis. The x-axis orbits,
however, consist of four pieces, separated by the proton
and the inter-proton potential barrier, in the P3 domain.
Because of this,in our previous paper [9] we are not able
to make an analysis on the bifurcation of the P2 and P3
types.

Under Thiele-Burrau’s transformation, the calculation
of the monodromy matrix can be run with no singulari-
ties. Figure 5(b) shows the trace of the monodromy matrix
for the internuclear orbit from which all P2 orbits bifur-
cate. When its value goes through 2 + 2 cos(π/α), (not
2 + 2 cos(2π/α), because of the two potential wells for
−π ≤ u ≤ π ), a new P2 periodic orbit of winding num-
ber α bifurcates from it. As energy approaches to −4, the
trace of the monodromy matrix goes to infinity sharply,
and the orbit becomes very unstable. A similar situation
exists in the P3 domain. The traces of the monodromy ma-
trices for the borderline orbits EG and DF are plotted in
Figures 5(c) and (d), respectively. Again, when the trace
goes through 2 + 2 cos(2πα), a new P3 orbit with wind-
ing number α is born from the upper or lower borderline
orbits.

It should be pointed out that all the orbits are stable
in general, including the mother orbit itself. The special
case is the saddle orbit, which is always unstable. The
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saddle orbit and the inter-nuclear orbit merge at point
E (see Fig. 4) where the total energy equals to −4 and
the period of the pendulum for the variable u becomes
infinity at this energy corresponding to a hyperbolic point
at E = −4 of equation (14). This is why the trace of the
monodromy matrix approaches to infinity sharply at this
point. Similar situations occur in the borderline orbit of
P1 and P2 types.

4 Semiclassical quantization

The H+
2 system, like He, is considered to be one of the

fundamental quantum-mechanical systems. It has been
shown that the periodic orbits of the helium atom could
tell us its quantum properties, and now the problem of
the semiclassical quantization of the periodic orbits of H+

2
becomes more important. Based on Feynman’s path inte-
grals Gutzwiller expresses the density of states in terms of
periodic orbits in his now famous trace formulas [4]. There
are several versions of trace formulas, all derived based on
similar main ideas, that is, we can obtain a semiclassical
expression for the density of states by taking the trace
of a semiclassical approximation of Green’s function. For
the latter, we can use the Fourier transform of a gener-
alized Van Vleck propagator and evaluate all integration
involved by the stationary phase approximation. An appli-
cation of this procedure to integrable systems (including
separable systems) generates a trace formula, which turns
out to be identical to a semiclassical expression obtained
by Berry and Tabor [14], who are the first to derive such
a formula for integrable systems. The procedure employed
by Berry and Tabor [14] makes it clear that their formulas
apply rigorously only to integrable systems, because in the
derivation they replace the energy in the density of state
equation by an expression given by the EBK quantization
rules.

The trace formula derived by Gutzwiller for hard chaos
can be extended to include stable periodic orbits [4] and
thus are sometimes used for mixed systems. In deriving
this version of the trace formula, it was assumed that the
periodic orbits are isolated. This assumption is certainly
not valid for separable systems, because there are continu-
ous distributions of periodic orbits on rational tori in these
systems.

Since the present system is separable, we have used the
Berry-Tabor formula for the calculation of the density of
states. For a two-dimensional system with spherical poten-
tial V (r), Berry and Tabor obtained the density-of-state
formula as

n(E) = nTF(E) +
2

√
π~3/2

∑
MS

∑
ML

ε(M)τ(LM , E)√
MS

∂Θ(LM )

∂L

× cos

[
W (M)

~
−

(
MS +

1

4

)
π

]
, (28)

where nTF(E) is the Thomas-Fermi term, and

τ(LM , E) =
∂S(L,E)

∂E
,

Θ(LM ) = −
∂S(L,E)

∂L
(29)

with

S =

∫ r2

r1

√
2m

(
E − V (r) −

L2

2mr2

)
dr . (30)

In these equations, W (M) is the action around a closed
orbit, M = (MS ,ML) the topological lattice vector, and
ε(M) is a degeneracy fractor equal to two if ML 6= 0 and
unity if ML=0. Based on this formula, using the separa-
ble coordinates ξ and η, the H+

2 system resembles closely
a spherical potential system, in which we set η = cos θ
and the associated action relates directly to the angular
momentum, we then obtain

n(E) = nTF(E) +
2

√
π~3/2

∑
mξ

∑
mη

ε(M)τ(LM , E)√
mξ

∂Θ(LM )

∂L

× cos

[
W (M)

~
−

(
mξ +

1

4

)
π

]
, (31)

where mη and mξ are the number of cycles in the η coor-
dinate and that in the ξ coordinate, and

S =

∫ ξmax

ξmin

√
2me

(
R2E

2
+

2Rξ

(ξ2 − 1)
−

Ω

2me(ξ2 − 1)

)
dξ ,

(32)

where ξmin (ξmax) is the minimum (maximum) of the vari-
able ξ determined by the energy E, γ, and the type of
orbit:

ξmax = −
2

E

(
1 +

1

2

√
4− γE

)
, (33)

ξmin =

−
2

E

(
1−

1

2

√
4− γE

)
for P1 orbits,

1 for P2 and P3 orbits,

(34)

and the Thomas-Fermi term is

nTF(E) =
( me

2π~2

) 3
2 1

Γ (3/2)

∫ 1

−1

dη

×

∫ ξmax

ξmin

√
E(ξ2 − η2) + 4ξ

R(ξ2 − η2)
dξ . (35)

According to Berry and Tabor’s derivation, the density-of-
state for a three-dimensional system with similar potential
are the same as that for a two-dimensional system except
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Fig. 6. Semiclassical density of states distribution, n(E), and the exact quantum eigenvalues (denoted by arrows) of the H+
2

ion. The upper three pictures are the distributions from the P1, P2 and P3 types, respectively. The lower one includes all the
three types. n0(E) represents the Thomas-Fermi distribution which is almost zero except when E is very close to zero.

for the degeneracy fractor

ε(M) =
2LM
~

= (2mη + 1) . (36)

We would like to emphasis that the above semiclassical
quantization equations could be derived to be similar forms
in the u-v plane.

After successfully fitting properties of periodic orbits,
such as actions, periods, curvatures and especially the re-
lationship between γ, E, and α, we have included in our
calculation of the density of states all periodic orbit of
α = p : q with p and q not exceeding 40, and orbits of
all three types. It means that we have used thousands
of periodic orbits in our calculation and the results for
R = 1 bohr are presented in Figure 6. It is obvious that
the agreement between the semiclassical density of states
distribution with the exact quantum eigenenergies is rea-
sonably good, especially for the few lowest states. Since
we have employed scaled phase space, one may find the
results for the other distance R 6= 1 by setting the Planck
constant as ~

sc = ~/
√
R in equations (31, 36), or obtain

the semiclassical quantized energy directly by E = Esc/R.
The results for the other distance are not so good as
that for the distance R = 1 because of the limitation of
the primitive semiclassical quantization. Unlike the frozen
planet configuration of He, the electron tunneling through
the potential barrier plays an important role in the semi-
classical quantization of the hydrogen molecular ion. Thus
significant improvements can only be expected when we
go beyond the primitive semiclassical quantization meth-
ods(the details for this problem can be found in recent
papers [10,16]).

5 Discussions

Considering the fact that the H+
2 has been believed to be

a well-understood system, our exhaustive work on semi-
classical quantization will add, of course, the fundamental
knowledge to this system. The orbits we found are impor-
tant, for they are prototype periodic orbits for a two- or
multiple-centered systems and may play roles in the classi-
cal understanding of chaotic scattering and, possibly, the
chemical bonding associated with these system. For the
latter aspect we have carried out a first study in [9,10].
Mueller, et al. [15] have also recently reexamined the clas-
sical stability problem of H+

2 beyond BOA and found the
approximate adiabatic invariant of the system. However,
up to now the classical dynamical behavior of H+

2 beyond
BOA has not been fully explored. In reference [10] we treat
the motions of electron and the two protons on the same
footing and find that the type P2 orbits change to be mo-
tions on torus in the non-BOA case, and types P1 and P3
orbits become chaotic. Besides these, we also find a hybrid
motion between types P2 and P3, and the H+

2 system with
this hybrid motion is still bond. The hybrid motion is im-
portant in the Non-BOA H+

2 and may suggest a new type
of chemical bonding or electronic state, which can not be
described accurately within the BOA.

As stated earlier, the bifurcation patterns of H+
2 re-

semble closely that of atomic hydrogen in an electric field,
another separable system. For the latter system, the pe-
riodic orbit bifurcation may manifest themselves in the
spectra of H+

2 . It would be interesting to predict theoret-
ically the related signatures in the molecular spectra.

Finally, with all the interesting periodic orbits
unearthed, important questions follow. One which rises to
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the fore is whether or not any of these orbits continue to
exist when the protons are allowed to move and how their
stabilities change with the types of nuclear motions i.e.,
rotation, vibration, and both. Among the possibilities are:
torus behavior replaces a periodic orbit, a periodic orbit
changes stability, a periodic orbit disappears, new types of
periodic orbits and chaotic trajectories emerge etc. These
tori or periodic orbit structures may be useful for under-
standing the properties of long-range van der Waals states
of the H+

2 system.
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